Analysis of Accelerating Algorithms for the Restarted Arnoldi Iteration

نویسندگان

  • Akira Nishida
  • Yoshio Oyanagi
چکیده

We present an approach for the acceleration of the restarted Arnoldi iteration for the computation of a number of eigenvalues of the standard eigenproblem Ax = x. This study applies the Chebyshev polynomial to the restarted Arnoldi iteration and proves that it computes necessary eigenvalues with far less complexity than the QR method. We also discuss the dependence of the convergence rate of the restarted Arnoldi iteration on the distribution of spectrum.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Some new restart vectors for explicitly restarted Arnoldi method

The explicitly restarted Arnoldi method (ERAM) can be used to find some eigenvalues of large and sparse matrices. However, it has been shown that even this method may fail to converge. In this paper, we present two new methods to accelerate the convergence of ERAM algorithm. In these methods, we apply two strategies for the updated initial vector in each restart cycles. The implementation of th...

متن کامل

Polynomial Acceleration for Restarted Arnoldi Iteration and its Parallelization

We propose an accelerating method for the restarted Arnoldi iteration to compute a number of eigenvalues of the standard eigenproblem Ax = x and discuss the dependence of the convergence rate of the accelerated iteration on the distribution of spectrum. The e ectiveness of the approach is proved by numerical results. We also propose a new parallelization technique for the nonsymmetric double sh...

متن کامل

Implicitly Restarted Generalized Second-order Arnoldi Type Algorithms for the Quadratic Eigenvalue Problem

We investigate the generalized second-order Arnoldi (GSOAR) method, a generalization of the SOAR method proposed by Bai and Su [SIAM J. Matrix Anal. Appl., 26 (2005): 640–659.], and the Refined GSOAR (RGSOAR) method for the quadratic eigenvalue problem (QEP). The two methods use the GSOAR procedure to generate an orthonormal basis of a given generalized second-order Krylov subspace, and with su...

متن کامل

Thick-Restart Lanczos Method for Symmetric Eigenvalue Problems

For real symmetric eigenvalue problems, there are a number of algorithms that are mathematically equivalent, for example, the Lanczos algorithm, the Arnoldi method and the unpreconditioned Davidson method. The Lanczos algorithm is often preferred because it uses signiicantly fewer arithmetic operations per iteration. To limit the maximum memory usage, these algorithms are often restarted. In re...

متن کامل

A Restarted Krylov Subspace Method for the Evaluation of Matrix Functions

We show how the Arnoldi algorithm for approximating a function of a matrix times a vector can be restarted in a manner analogous to restarted Krylov subspace methods for solving linear systems of equations. The resulting restarted algorithm reduces to other known algorithms for the reciprocal and the exponential functions. We further show that the restarted algorithm inherits the superlinear co...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1997